Filtering the Rejection Set While Preserving False Discovery Rate Control

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Private False Discovery Rate Control

We provide the first differentially private algorithms for controlling the false discovery rate (FDR) in multiple hypothesis testing, with essentially no loss in power under certain conditions. Our general approach is to adapt a well-known variant of the Benjamini-Hochberg procedure (BHq), making each step differentially private. This destroys the classical proof of FDR control. To prove FDR co...

متن کامل

On Online Control of False Discovery Rate

Multiple hypotheses testing is a core problem in statistical inference and arises in almost every scientific field. Given a sequence of null hypotheses H(n) = (H1, . . . ,Hn), Benjamini and Hochberg [BH95] introduced the false discovery rate (FDR), which is the expected proportion of false positives among rejected null hypotheses, and proposed a testing procedure that controls FDR below a pre-a...

متن کامل

False Discovery Rate Control With Groups.

In the context of large-scale multiple hypothesis testing, the hypotheses often possess certain group structures based on additional information such as Gene Ontology in gene expression data and phenotypes in genome-wide association studies. It is hence desirable to incorporate such information when dealing with multiplicity problems to increase statistical power. In this article, we demonstrat...

متن کامل

Symmetric Directional False Discovery Rate Control.

This research is motivated from the analysis of a real gene expression data that aims to identify a subset of "interesting" or "significant" genes for further studies. When we blindly applied the standard false discovery rate (FDR) methods, our biology collaborators were suspicious or confused, as the selected list of significant genes was highly unbalanced: there were ten times more under-expr...

متن کامل

False Discovery Rate Control via Debiased Lasso

We consider the problem of variable selection in high-dimensional statistical models where the goal is to report a set of variables, out of many predictors X1, . . . , Xp, that are relevant to a response of interest. For linear high-dimensional model, where the number of parameters exceeds the number of samples (p > n), we propose a procedure for variables selection and prove that it controls t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2021

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.2021.1920958